南安市化工机械网

当前的位置是:主页 >> 工业设备

印刷体汉字识别系统二

时间:2021-08-18 来源网站:南安市化工机械网

印刷体汉字识别系统(二)

三、印刷体文字识别的研究历程

印刷体文字的识别可以说很早就成为人们的梦想,早在1929年,Taushek就在德国获得了一项有关OCR的专利。欧美国家为了将浩如烟海、与日俱增的大量报刊杂志、文件资料和单据报表等文字材料输入计算机进行信息处理,从50年代就开始了西文OCR(Optical Character Recognition,光学字符识别)技术的研究,以便代替人工键盘输入。

印刷体汉字的识别最早可以追溯到60年代。1966年,IBM公司的Casey和Nagy发表了第一篇关于印刷体汉字识别的论文,在这篇论文中他们利用简单的模板匹配法识别了1,000个印刷体汉字。70年代以来,日本学者做了许多工作,其中有代表性的系统有1977年东芝综合研究所研制的可以识别2000汉字的单体印刷汉字识别系统;80年代初期,日本武藏野电气研究所研制的可以识别2300个多体汉字的印刷体汉字识别系统,代表了当时汉字识别的最高水平。此外,日本的三洋、松下、理光和富士等公司也有其研制的印刷汉字识别系统。这些系统在方法上,大都采用基于K-L数字变换的匹配方案,使用了大量专用硬件,其设备有的相当于小型机甚至大型机,价格极其昂贵,没有得到广泛应用。

我国对印刷汉字识别的研究始于70年代末、80年代初,大致可以分为三大阶段:

(1) 第一阶段从70年代末期到80年代末期,主要是算法和方案探索。

(2) 第二阶段是90年代初期,中文OCR由实验室走向市场,初步实用。

(3) 第三阶段也就是目前,主要是印刷汉字识别技术和系统性能的提高,包括汉英双语混排识别率的提高和稳健性的增强。

同国外相比,我国的印刷体汉字识别研究起步较晚。但由于我国政府对汉字自动识别输入的研究从80年代开始给予了充分的重视和支持,经过科研人员十多年的辛勤努力,印刷体汉字识别技术的发展和应用,有了长足进步:从简单的单体识别发展到多种字体混排的多体识别,从中文印刷材料的识别发展到中英混排印刷材料的双语识别。各个系统可以支持简、繁体汉字的识别,解决了多体多字号混排文本的识别问题,对于简单的版面可以进行有效的定量分析,同时汉字识别率已达到了98%以上。

清华大学电子工程系、中国科学院计算所智能中心、北京信息工程学院、沈阳自动化研究所等单位分别研制开发出实用化的印刷体汉字识别系统。尤其是由清华大学电子工程系研制的清华TH-OCR产品,始终处于技术与产品发展的最前沿,并占据着最大的市场份额,代表着中文OCR技术发展的潮流。

这一成就,是对中华文化宝贵遗产的继承和发扬,在世界电脑发展史上,必将留下光辉的一页,同时,这也是造福子孙千秋万代的大事。国家高技术研究发展“863”计划、国家重点科技攻关计划、国家自然科学基金和军事基础研究基金都对这一研究课题予以极大的重视和大力的支持。

四、印刷体文字识别研究方法简介

识别方法是整个系统的核心。用于汉字识别的模式识别方法可以大致分为结构模式识别、统计模式识别及两者的结合。下面分别进行介绍。

4.1 结构模式识别

汉字是一种特殊的模式,其结构虽然比较复杂,但具有相当严格的规律性。换言之,汉字图形含有丰富的结构信息,可以设法提取含有这种信息的结构特征及其组字规律,作为识别汉字的依据,这就是结构模式识别。

结构模式识别是早期汉字识别研究的主要方法。其主要出发点是汉字的组成结构。从汉字的构成上讲,汉字是由笔划(点横竖撇捺等)、偏旁部首构成的;还可以认为汉字是由更小的结构基元构成的。由这些结构基元及其相互关系完全可以精确地对汉字加以描述,就像一篇文章由单字、词、短语和句子按语法规律所组成一样。所以这种方法也叫句法模式识别。识别时,利用上述结构信息及句法分析的方法进行识别,类似一个逻辑推理器。

用这种方法来描述汉字字形结构在理论上是比较恰当的,其主要优点在于对字体变化的适应性强,区分相似字能力强;但是,在实际应用中,面临的主要问题是抗干扰能力差,因为在实际得到的文本图象中存在着各种干扰,如倾斜,扭曲,断裂,粘连,纸张上的污点,对比度差等等。这些因素直接影响到结构基元的提取,假如结构基元不能准确地得到,后面的推理过程就成了无源之水。此外结构模式识别的描述比较复杂,匹配过程的复杂度因而也较高。所以在印刷体汉字识别领域中,纯结构模式识别方法已经逐渐衰落,句法识别的方法正日益受到挑战。

4.2 统计模式识别

统计决策论发展较早,理论也较成熟。其要点是提取待识别模式的的一组统计特征,然后按照一定准则所确定的决策函数进行分类判决。

汉字的统计模式识别是将字符点阵看作一个整体,其所用的特征是从这个整体上经过大量的统计而得到的。统计特征的特点是抗干扰性强,匹配与分类的算法简单,易于实现。不足之处在于细分能力较弱,区分相似字的能力差一些。常见的统计模式识别方法有:

(1) 模板匹配。模板匹配并不需要特征提取过程。字符的图象直接作为特征,与字典中的模板相比,相似度最高的模板类即为识别结果。这种方法简单易行,可以并行处理;但是一个模板只能识别同样大小、同种字体的字符,对于倾斜、笔划变粗变细均无良好的适应能力。

(2)利用变换特征的方法。对字符图象进行二进制变换(如Walsh, Hardama变换)或更复杂的变换(如Karhunen-Loeve, Fourier,Cosine,Slant变换等),变换后的特征的维数大大降低。但是这些变换不是旋转不变的,因此对于倾斜变形的字符的识别会有较大的偏差。二进制变换的计算虽然简单,但变换后的特征没有明显的物理意义。K-L变换虽然从最小均方误差角度来说是最佳的,但是运算量太大,难以实用。总之,变换特征的运算复杂度较高。

(3)投影直方图法。利用字符图象在水平及垂直方向的投影作为特征。该方法对倾斜旋转非常敏感,细分能力差。

(4)几何矩(Geometric Moment)特征。M. K. Hu提出利用矩不变量作为特征的想法,引起了研究矩的热潮。研究人员又确定了数十个移不变、比例不变的矩。我们都希望找到稳定可靠的、对各种干扰适应能力很强的特征,在几何矩方面的研究正反映了这一愿望。以上所涉及到的几何矩均在线性变换下保持不变。但在实际环境中,很难保证线性变换这一前提条件。

(5)Spline曲线近似与傅立叶描绘子(Fourier Descriptor)。两种方法都是针对字符图象轮廓的。Spline曲线近似是在轮廓上找到曲率大的折点,利用Spline曲线来近似相邻折点之间的轮廓线。而傅立叶描绘子则是利用傅立叶函数模拟封闭的轮廓线,将傅立叶函数的各个系数作为特征的。前者对于旋转很敏感。后者对于轮廓线不封闭的字符图象不适用,因此很难用于笔划断裂的字符的识别。

(6)笔划密度特征。笔划密度的描述有许多种,这里采用如下定义:字符图象某一特定范围的笔划密度是在该范围内,以固定扫描次数沿水平、垂直或对角线方向扫描时的穿透次数。这种特征描述了汉字的各部分笔划的疏密程度,提供了比较完整的信息。在图象质量可以保证的情况下,这种特征相当稳定。在脱机手写体的识别中也经常用到这种特征。但是在字符内部笔划粘连时误差较大。

(7)外围特征。汉字的轮廓包含了丰富的特征,即使在字符内部笔划粘连的情况下,轮廓部分的信息也还是比较完整的。这种特征非常适合于作为粗分类的特征。

(8)基于微结构特征的方法。这种方法的出发点在于,汉字是由笔划组成的,而笔划是由一定方向,一定位置关系与长宽比的矩形段组成的。这些矩形段则称为微结构。利用微结构及微结构之间的关系组成的特征对汉字进行识别,尤其是对于多体汉字的识别,获得了良好的效果。其不足之处是,在内部笔划粘连时,微结构的提取会遇到困难。

(9)特征点特征。早在1957年,Solatron Electronics Group公司发布了第一个利用窥视孔(peephole)方法的OCR系统。其主要思想是利用字符点阵中一些有代表性的黑点(笔划),白点(背景)作为特征来区分不同的字符。后有人又将这种方法运用到汉字识别中,对其中的黑点又增加了属性的描述,如端点、折点、交叉点等。也获得了比较好的效果。其特点是对于内部笔划粘连的字符的识别的适应性较强,直观性好,但是不易表示为矢量形式,不适合作为粗分类的特征,匹配难度大。

当然还有许多种不同的统计特征,诸如图描述法、包含配选法、脱壳透视法、差笔划法等,这里就不一一介绍了。

声明:

本文来源于网络版权归原作者所有,仅供大家共同分享学习,如作者认为涉及侵权,请与我们联系,我们核实后立即删除。